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Abstract

Two-dimensional numerical simulations of laminar and turbulent natural convection in a fluid with internal heat
generation in a square cavity are presented. The simulations were carried out at Rayleigh numbers 10°~10'' and Prandtl
numbers 0.25 and 0.6. The turbulent fluid motion was captured with a large-eddy simulation (LES) model. The
Rayleigh-Taylor instabilities at the upper boundary and the Kelvin—Helmholtz instabilities at the side boundaries cause
first local and then global transition from laminar to turbulent motion. Lower Prandtl numbers enhance heat transfer
through the bottom region, whereas higher Prandtl numbers enhance heat transfer through the upper region of the
simulation domain. The simulations also reveal that the Rayleigh—Nusselt number relation is not uniformly linear in a
log,,—log,, diagram. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection is a widely studied heat transfer
phenomenon. The reason for this particular interest is in
the everyday importance of natural convection. It may
be found practically anywhere where heat transfer is
present in a fluid. Apart from the practical side, natural
convection has also been studied as a classical dynamic
system. Special attention has been focused on the tran-
sition to turbulence, which occurs under favorable
conditions. Although natural convection due to internal
heat generation is not less important, it drew much less
attention in the past than the Rayleigh-Bénard con-
vection, for example. However, in recent years, it be-
came a subject of intense interest mainly due to nuclear
safety issues. That is to say, in a light water reactor, an
inadequate or prolonged absence of nuclear reactor core
cooling may cause core melting to occur. The reactor
core melt relocates, flowing downwards toward the re-
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actor vessel lower plenum, where it accumulates. Heat is
further generated in the melt pool due to fission product
decay. To predict the behavior of the power plant and to
design emergency procedures, it is necessary to know the
dynamics and heat transfer processes in the radioactive
melt pool. This is also a practical frame for the present
work.

Investigations of natural convection phenomena in a
fluid with volumetric heat generation began in the early
1970s with Kulacki and collaborators [1-3], who con-
ducted several experiments using Joule heating as a
volumetric heat source. In these experiments, which
were primarily applicable to the nuclear industry, heat
transfer through a horizontal fluid layer was assessed for
different boundary cooling arrangements. Jahn and
Reineke [4] and Steinberner and Reineke [5] exper-
imentally and numerically investigated the natural con-
vection of Joule-heated fluids in rectangular and
semicircular cavities. The range of the Rayleigh number
was from 5 x 10° to 3 x 10" at the Prandtl number 7.
They found that the natural convection flows in inter-
nally heated cavities are thermally stratified in the lower
regions, whereas the upper part is unsteady due to a
multi-vortex flow field. Using water as a working fluid,
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Nomenclature

cp specific heat

Cn convection term

Cs Smagorinsky constant

Df diffusion term

g gravity

Gn volumetric term

h temperature

1 volumetric heat generation
/ filter width

L length of simulation domain
Nu Nusselt number

P pressure

Pr=cppv/i Prandtl number

Ps pressure term

Ra = c,pgPIL’/2*v  Rayleigh number

S deformation velocity tensor
t time

tDf turbulent diffusion term

T simulation time interval
v velocity
X,y spatial coordinates

B temperature dilatation
y finite volume boundary
€ turbulent dissipation
Y, thermal conductivity
v kinematic viscosity
o mass density

T stress tensor

v thermal diffusivity

Subscripts/superscripts

b domain boundary index

f filter

i finite volume boundary index
n iteration index

sgd subgrid or turbulent variable

Mayinger et al. [6] obtained experimentally as well as
numerically the average heat transfer coefficient on the
walls of rectangular and semicircular cavities. The in-
vestigated Rayleigh number spanned from 8 x 10* to
10" at the Prandtl number 6-7. The researchers also
conducted a numerical analysis to calculate the average
heat transfer coefficient on the wall of spherical and
vertical cylindrical cavities. Their published results
demonstrated that the Prandtl number has a small effect
on the Nusselt number. Asfia et al. [7] and Frantz and
Dhir [8] also conducted experiments of natural convec-
tion in a spherical cavity. The working fluid was Freon-
113, which was heated with microwaves. The range of
the Rayleigh number tested was between 2 x 10'* and
1.1 x 10" at the Prandtl number 8. These experiments
confirm values of the Nusselt number, which were ob-
tained by Mayinger et al. [6] 20 years earlier for a
semicircular geometry. The influences of insulated and
cooled pool top boundary were also assessed. In addi-
tion, it was observed that the ratio of maximum to
minimum heat transfer coefficient can be as high as 20,
while the ratio of maximum to average heat transfer can
be as high as 2.5.

In all the above-mentioned experiments, the re-
searchers were unable to reproduce adequate severe ac-
cident conditions. This was partly due to the high
temperatures, which would be required, as well as the
unknown material properties of the melt. The material
properties of reactor core melt only recently have be-
come known due to the RASPLAV project [9]. As a
consequence, the Nusselt number correlations did not
include the Prandtl number dependence. Later, numer-
ical studies, which were conducted at the lower Prandtl

numbers, confirmed the Prandtl number effect on the
heat transfer processes on the walls of the simulation
domain. In [10], the effect of the Prandtl number on the
Nusselt number distributions for different geometries
(rectangular, cylindrical and elliptical) was demon-
strated. In their research, the Rayleigh number spanned
from 10° to 10'? and the Prandtl number from 0.6 to 7.
The authors found that the Prandtl number influence is
small in convection-dominated regions and much more
significant in conduction-dominated regions. Neverthe-
less, the influence of the Prandtl number on fluid be-
havior grows with the increase of the Rayleigh number.
Also, Verzicco and Camussi [11] studied the Prandtl
number effect on the dynamics of a convective turbulent
flow with numerical experiments. They found that above
the Prandtl number 0.35 the Nusselt number depends
only on the Rayleigh number. However, the Prandtl
number dependence of the Nusselt number was observed
below the Prandtl number 0.35.

The common problem of all numerical simulations is
the turbulent behavior of the fluid at high Rayleigh
numbers, which was never successfully solved. Due to
the small scale of fluid motion in the turbulent regime,
additional modeling of turbulence is needed. Dinh and
Nourgaliev [12] reviewed the turbulence modeling in
large volumetrically heated liquid pools. The attention
was focused on different k— models as well as on Rey-
nolds stress models. Detailed calculations were per-
formed for the CAPO experimental arrangement [13],
where the cavity had a two-dimensional elliptical shape.
The Rayleigh numbers were in the range from 10°
to 105, Although the calculated results only slightly
overpredict the Nusselt number values, the numerical
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consistency of the model is questionable due to a very
poor resolution of the numerical mesh. Furthermore,
Worner et al. [14] made a comprehensive study of tur-
bulence in an internally heated convective fluid layer
using direct numerical simulation. The Prandtl number
of the modeled fluid was 7 and the Rayleigh numbers
were in the range of 10°~10°. Using calculated turbulent
moments and turbulent heat fluxes, the authors showed
that the k—e modeling is not suitable for the calculation
of turbulent natural convection in a fluid with internal
heat generation. As they were interested mainly in the
turbulence data and wanted to save computational re-
sources, their simulations were initiated from a para-
bolic temperature profile and were stopped before an
overall thermal equilibrium was achieved. In our expe-
rience, this may lead to a severe underprediction of
overall heat transfer over the simulation domain.

Some attempts to model the turbulent natural con-
vection behavior in a fluid layer with internal heat gen-
eration were also presented in [15]. The calculations,
which were performed for a fluid layer at Rayleigh
numbers up to 1.4 x 10° with the Smagorinsky subgrid
model, agreed well with the experimental data.

In the present paper, two-dimensional numerical
simulations of laminar and turbulent natural convection
in a fluid with internal heat generation in a square cavity
are presented. The simulations were carried out at
Rayleigh numbers of 10°-~10'" and the Prandtl numbers
0.25 and 0.6. The turbulent fluid motion was captured
with the large-eddy simulation (LES) model. The per-
formed simulations enable us to understand the time
evolution of turbulent natural convection in fluids with a
Prandtl number smaller than 1.0.

Based on numerical simulations, the time distribu-
tions of the Nusselt number on the cavity walls were also
predicted. Comparison of the results for different
Prandtl numbers shows a strong dependence of fluid
dynamics on the Prandtl number.

2. Mathematical model
2.1. Transport equations

The basic assumption in the present work was that
the fluid is incompressible with internal heat generation.
To reduce the number of free parameters in the calcu-
lations and to simplify the comparison of results, the
transport equations of mass, momentum and energy
were transformed into a dimensionless form using
Boussinesq’s approximation to include buoyancy forces:

V-7=0, (1)
v L g
a+vv(u®v):pr+Pr(V-z)*Rl“”rh@v (2)

%+V~(ﬁh):vzh+l. (3)
A complete description of the scaling procedure may be
found in [16,17].

At high Rayleigh numbers (Ra > 10%), time-aperiodic
behavior occurs. When the Rayleigh number is further
increased, a local turbulent motion appears, reducing
the local scale of fluid motion. To properly take the
subgrid motion of the fluid into account, the LES
Smagorinsky model was implemented, with a modifica-
tion to capture the buoyancy forces due to the tem-
perature gradients (as presented by Eidson [18]). After
applying the LES concept of spatial filtering, Eqs. (1)
(3) can be written as:

V.5=0, (4)
Z_f+ V. <§® ,?) =-Vp+ Pr(VZUT) - RaPrf:%

+ V- (vsga28), (5)
%}Z+ V- (zﬁz) =Vh+1+V- (osngft), (6)

where the overbar indicates filtered values. The non-
linear convection term of subgrid velocities in the mo-
mentum equation acts as a stress term with the artificial
subgrid viscosity, which was modeled using the Kol-
mogorov assumption [19]:

Vea = const.lfg!, 7

It was further assumed that the filter splits the spectra of
subgrid motion somewhere in the Kolmogorov equilib-
rium region and that subgrid turbulence dissipation is
equal to subgrid turbulence production [21]. Using these
assumptions, the subgrid turbulence production can be
easily defined from filtered values. Thus,

R 1/2
Veed = (CAx)? <2§:§+I;’P’ <Vh.£>> . (8)

sgd ‘§|

The first term in Eq. (8) represents stress forces while the
second term represents buoyancy. The constant C; in
Eq. (8) is case-dependent and must be determined em-
pirically. In our case, its value was prescribed as 0.1,
whereas the turbulent Prandtl number Pryg was set
equal to 0.4. Similarly, the non-linear convection term of
subgrid velocities and temperature in the energy equa-
tion (6) can be replaced with diffusive flux using the
subgrid thermal diffusivity defined as a linear function of
subgrid viscosity:

ngd
Vsod = . 9
= ©)
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The adopted Smagorinsky model is too dissipative in
the vicinity of the walls. To reduce the near-wall dissi-
pation, the subgrid viscosity was multiplied by the Van
Driest damping function. Its theoretical background is
described in [20].

The proposed turbulence model was chosen because
of its simplicity and efficiency. The described procedure
for obtaining subgrid viscosity (8) and subgrid thermal
diffusivity (9) can be applied to transport equations
(1)—(3) in two as well as in three dimensions. The ab-
sence of the vorticity stretching effect in two-dimen-
sional turbulence significantly changes the path of the
turbulence energy cascading process, yet it does not
contradict the initial assumption of equality between
subgrid turbulence production and subgrid turbulence
dissipation, that is, the vortex stretching mechanism is
responsible for redistribution of turbulent kinetic en-
ergy between dimensions. Furthermore, it is negligible
on the subgrid-scale level if the applied spatial filter is
small enough.

The applied turbulence model dampens the whole
spectrum of subgrid motion and does not allow any
energy backscatter. The dynamic LES models
developed by Germano et al. [21] and Lilly [22] also
allow energy backscatter from the subgrid to the re-
solved scales. The methods use spatial filtering on two
grid levels to calculate the spatially dependent model
constant C;. As the filtering procedure is carried out
explicitly, the dynamic LES model is easily applicable
only on equidistant and structured meshes. This fact
severely limits the range of suitable engineering prob-
lems. In [23], an attempt to use a dynamic LES model
for the Rayleigh-Bénard convection is presented. They
proposed an improvement of Eidson’s formulation [18]
of turbulent viscosity. As their assumptions violate the
subgrid kinetic energy transport equation, the innova-
tion was not applied in our model.

2.2. Geometrical considerations

Although experimental and numerical results for
spherical and elliptical cavities are already available [24], a
square cavity was used to simplify calculations at high
Rayleigh numbers. A comparison of experimental results
from natural convection cases in rectangular and spheri-
cal cavities reveals the similarity of heat transfer processes
in both geometries. Moreover, it is safe to assume that the
maximum Nusselt number is similar for rectangular and
spherical cavities of similar dimensions. The maximum
Nusselt number occurs in the upper corners of the cavities.
Larger discrepancies between heat transfer in rectangular
and spherical cavities occur only in the lower parts due to
impingement and additional looping of the fluid caused
by the corners [10,25].

Experimental and numerical results presented by
Nourgaliev et al. [10] and Dinh and Nourgaliev [12]

suggest that the fluid pattern is basically two-dimen-
sional. Questioning this assumption, Worner et al. [14]
performed direct numerical simulations of a fluid layer
with volumetric heat generation. These simulations
show that the thermal field and the induced velocity
field are three-dimensional and periodic in a spanwise
direction, forming vertical convection cells of irregular
forms. Taking into account the periodicity of fluid
structures in a spanwise direction, a two-dimensional
model reveals the basic characteristics of the considered
phenomena.

2.3. Initial and boundary conditions

At the beginning of the simulation, the fluid was
considered at rest and isothermal, with mean tempera-
ture 2 = 0. Random temperature fluctuations with an
amplitude 10~° were superimposed on the initial mean
profile. For the momentum equation, no-slip boundary
conditions at all boundaries of the square cavity were
prescribed. To represent the solidification and melting
processes on the walls of the lower plenum, identical
isothermal boundary conditions at all boundaries were
prescribed for the energy equation. During the entire
simulation time interval, the dimensionless boundary
temperature was i = 0.

3. Numerical procedure
3.1. Numerical mesh

The transport equations (4)-(6) were transformed
into an integral form in order to force momentum and
energy conservation. The discretization followed the fi-
nite volume method using 256 x 256 numerical cells. A
staggered arrangement for grid points was applied. The
thermal dissipation scale was estimated according to
Arpaci [26] with Eq. (10), whereas for the calculation of
the kinematic dissipation scale Eq. (11) was used.

Pr+1 1/4
gthermal = ( PrRa ) L7 (10)
P,,Z 1/4
gkinematio - (R_a) L. (11)

As the test calculations revealed, the thickness of the
boundary layer at the walls of the simulation domain is
only 3-5 dissipation scales. In the cases of Ra = 10° and
10", a uniform numerical mesh with 256 x 256 grid
points was still not able to capture the boundary layer
flow. To enhance the resolution of the numerical model,
the numerical mesh was locally refined to a point where
the grid spacing near the boundaries was as small as the
smallest dissipation scale.



A. Horvat et al. | International Journal of Heat and Mass Transfer 44 (2001) 3985-3995 3989

3.2. Discretization techniques

The convection terms in the momentum (5) and en-
ergy (6) equations were discretized according to the
high-resolution method as defined in [27]. As a limiter,
the so-called “‘superbee” limiter was used. For the dif-
fusion terms, the central-symmetric discretization was
applied.

In time, the momentum (5) and energy (6) equations
were discretized according to the semi-implicit Cranck—
Nicholson scheme:

- A
5 = 8 — MO+ P + S [(Df" + Df™)

+ (IDf" 4+ tDf") + (Gn™ 4 G, (12)

=R — AfCn"] + % [(Df" +Df"*)
+ ((Df" 4+ tDf"T] 4 At (13)

whereas integration was performed with the Gauss—
Siedel overrelaxation method as described in [28].

For the pressure calculation, the pressure correction
method as found in [29] was applied. The elliptic
pressure equation, which arises from the mass conser-
vation principle combining Egs. (4) and (5), was solved
with the full multigrid method as proposed in [30].

3.3. Stability

The timestep for the time integration method was
based on the stability restrictions for the explicit upwind
and Lax—Wendroff schemes, which combined into the
high-resolution scheme. For the momentum equation
(5), the following stability conditions for the upwind
scheme were implemented in the computational al-
gorithm:

[ox] | [vl 1 1
Al B oy (e )| =025,
LA ay AT (Ra )|
(14)
_ , ,
At % + % -1,
_|vx\Ax+(v+vsgd) [0,]AY + (v + Vsed) y
(15)

whereas for the Lax—Wendroff scheme the stability of
time integration was assured with

v 11
At{(sz—FA_;z)AH_(V+vsgd)(E+A_y2)} =0.25.

: (16)

As the timestep Ar in the last stability condition (16)
cannot be expressed explicitly, the timestep from the

previous iteration was used in the expression. For Ax
and Ay, the smallest grid spacings were used.

The identical stability conditions were also im-
plemented for the energy equation (6), where thermal
diffusivity v was used instead of viscosity v.

4. Results and discussion

Numerical simulations were performed for the Ray-
leigh numbers 10°, 107, 108, 10° and 10'!. The Prandtl
numbers were 0.25 and 0.6 in all cases. For the Rayleigh
number Ra = 10°, the dimensionless simulation time T
was 0.3, for Ra = 107 T was 0.2, for Ra = 10® T was 0.1,
for Ra = 10° T was 0.05 and for Ra = 10'' T was 0.015.
Fig. 1 presents snapshots of the temperature field for
different combinations of Rayleigh and Prandtl numbers
at the end of the simulation time 7. Simulated velocity
fields were also observed to examine the flow structures.

In general, the internally heated fluid rises in the
center of the simulation domain. It is cooled and flows
downwards along isothermal boundaries. At the Ray-
leigh number 10° (Fig. 1(a)), the fluid circulation is
stable, forming two counter-rotating vortices. After the
initial thermal transient, the system reaches steady-state
conditions. Although dimensionless temperatures are
higher at the Prandtl number 0.25, velocities are lower
than in the case of the Prandtl number 0.6.

At the Rayleigh number 107 (Fig. 1(b)), the Ray-
leigh-Taylor instabilities, which are the result of inten-
sive cooling at the top, cause a blob of cold fluid (or a
thermal) from the upper boundary towards the center of
the simulation domain. The thermal produces two ad-
ditional and stable vortices in the upper half of the
simulation domain. At both Prandtl numbers (0.25 and
0.6), the horizontal symmetry is preserved and the sys-
tem still reaches its steady-state conditions at the end of
the simulation.

At the Rayleigh number 10%, the symmetry of the
fluid circulation is broken. Steady-state conditions are
not reached at the end of the simulation. In the case of
the Prandtl number 0.6 the thermals at the upper
boundary are stronger than in the case of the Prandtl
number 0.25, where the unstable fluid behavior is mainly
generated in the lower corners of the simulation domain.
At the Prandtl number 0.6 the symmetry is mainly pre-
served in the lower half of the simulation domain.

At the Rayleigh number 10° (Fig. 1(c)), fluid flow
and related heat transfer from the upper to the lower
part of the simulation domain are squeezed into a very
narrow and unstable boundary layer. The Rayleigh—
Taylor instabilities at the upper boundary and the
Kelvin—Helmbholtz instabilities at the side boundaries
cause first a local and then a global transition from
laminar to turbulent motion. Fig. 1(c) clearly shows an
intense but locally bounded influence of the upper wall
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Fig. 1. Temperature field, Pr = 0.6 (left) and Pr = 0.25 (right). (a) Ra = 10°, (b) Ra = 107, (c) Ra = 10°, (d) Ra = 10" (figures indicate
temperature values corresponding to isotherms).

thermals on the fluid circulation at Prandtl number 0.6, 4.1. Time distributions of boundary-averaged Nusselt
whereas the influence is much more global at the Prandtl numbers
number 0.25.

When the Rayleigh number is increased to 10'!, the The simulation of the fluid behavior as a time-de-
flow in the entire simulation domain becomes unsteady pendent system enables us to realistically determine the
with no permanent fluid structures (Fig. 1(d)). Due to dimensionless heat transfer coefficient (Nusselt number)
these instabilities, the majority of thermal and kinetic on the boundaries of the simulation domain. The Nus-
energy is transported from the boundary layer flow into selt number was defined as:
temporary fluid structures. Also, heat transfer on the | Bh(t, )
boundaries of the simulation domain exhibits large Nu(t,xy) = 12b) (17)

random-like peaks and reductions of heat flow. (2(0)o1-aver. = H(Dbound aver ) 0o
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Fig. 1 (continued)

In general, Nusselt numbers increase when the Ray-
leigh number increases. As was already reported by No-
urgaliev et al. [10], local Nusselt numbers are low at the
bottom and increase towards the upper boundary of the
simulation domain. A local maximum is reached in the
upper corners of the sidewalls. Similar values of the local
Nusselt number also appear on the upper boundary.

Fig. 2 presents the time distributions of the bound-
ary-averaged Nusselt number, which is defined as:

1
Nu(t)bound.-avcr. :L_b /L Nu(tvxb)dxb' (18)
b

The averaging was performed over 256 boundary grid
points. Because the Nusselt number is formulated as a

normalized temperature gradient (Eq. (17)), it is infinite
at the beginning of the simulation.

At the Rayleigh number 10° (Fig. 2(a)), the time
distributions of side and upper boundary-averaged
Nusselt number indicate the appearance of the first bi-
furcation point between 0.05 and 0.1. At this point,
marked with the Nusselt number disturbance, two
counter-rotating vortices are formed ending the pure
conduction regime. After the convection regime starts,
the system soon reaches its steady state.

At the Rayleigh number 107, the formation of an
additional vortex pair is reflected as a second disturbance
in side and upper boundary-averaged Nusselt number
distributions. When the Rayleigh number is increased to
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Fig. 2. Boundary-averaged Nusselt number, Pr=0.6 (left) and Pr =025 (right). (a) Ra =10° (b) Ra=10%, (c) Ra=10°,

(d) Ra = 10"

10 (Fig. 2(b)) the second vortex pair becomes unstable
causing oscillations with almost uniform frequency in the
upper part of the simulation domain. However, the bot-
tom boundary Nusselt number distribution stays flat,
reaching a steady state soon after the initial thermal
transient.

At the Rayleigh number 10° (Fig. 2(c)), the time
distributions of side and upper boundary-averaged
Nusselt numbers reveal a stochastic nature of heat
transfer for the Prandtl number 0.6 as well as 0.25. For
the bottom boundary at the Prandtl number 0.6, the
Nusselt number distribution stays almost flat through
the entire simulation interval, whereas at the Prandtl
number 0.25 the process of heat transfer also becomes
unsteady at the bottom boundary.

At the Rayleigh number 10" (Fig. 2(d)), the bound-
ary-averaged Nusselt number time distributions for the
bottom, side and upper boundary reveal turbulent fluid
motion. Nusselt numbers on the side boundary nearly
reach Nusselt numbers on the upper boundary. This is the
result of the strong side and upper boundary layer ther-
mals, which dominate the heat transfer process.

The comparison of the Nusselt number distributions
for the Prandtl numbers 0.6 and 0.25 shows that lower
Prandtl numbers enhance heat transfer through the
bottom region, whereas higher Prandtl numbers enhance
heat transfer through the upper region of the simulation
domain.

4.2. Time-boundary-averaged Nusselt numbers

To compare the present results with those from other
authors, time-boundary-averaged Nusselt numbers were
also calculated. In this case, averaging was performed
over the 256 boundary grid points and over more than
10000 time integration steps:

Nulime-bound,-aver. =57 T / / Nu(t,xb) dtdxb. (19)
Ly T J, Jr

The Rayleigh—Nusselt number dependencies are pre-
sented in log,,—log,, diagrams and compared with re-
sults of other authors (Figs. 3-5).
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In general, as Figs. 3-5 reveal, the calculated values
of the Nusselt number agree well with those already
published. The discrepancies that do appear originate
from differences in geometries, as found in the work of
Kulacki and Goldstein [1] and Worner et al. [14], or
from higher Prandtl number, as used by Steinberner and
Reineke [5].

It is widely accepted that the Rayleigh—Nusselt
number relation is linear in a log,,—log,, diagram and
that the Prandtl number has no effect on the average
Nusselt number (e.g. [24]). As Figs. 3-5 show, the
Nusselt number behavior is much more complicated. On
the bottom boundary (Fig. 3), the calculated Rayleigh—
Nusselt number relation has a parabolic shape, which is
more distinctive at higher Prandtl numbers. Also, on the
side boundary (Fig. 4), the Rayleigh—Nusselt number
relation is not linear. On the upper boundary (Fig. 5),
there appear to be three separate regions, roughly in the
ranges Ra = 10°-107, 10’-10® and 10%-10'!, in which
the Rayleigh—Nusselt number relation is linear with a
different slope. The Rayleigh—Nusselt number relation
thus qualitatively reflects the gradual change of the flow
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t
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Z pE
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s
10° 10 10° 10 10" 10

Ra

Fig. 3. Rayleigh number vs. Nusselt number on the bottom
boundary.



3994 A. Horvat et al. | International Journal of Heat and Mass Transfer 44 (2001) 3985-3995

s
70 = —a8— Pr=0.25
F | - -A— - Pr-08
og = —-—y—-- Steinberner and Reineke
g — —«4—- Nourgaliev et al.
50
40
5 F
z F
20
,’/
A 4

Lol Ll Ll Lol

10 10 10
Ra

Ll

Fig. 4. Rayleigh number vs. Nusselt number on the side
boundary.

—=— Pr=0.25

100 — —A— - Pr=0.6

90 —-—y—-- Steinberner and Reineke
BD - Kylacki and Goldstein
70 — —4 — - Nourgaliev &t al.

8D ———-— Woerneret al,

50

40

30

Nu

20

vl v v ol
107 10 10 10" 10
Ra
Fig. 5. Rayleigh number vs. Nusselt number on the top
boundary.

from a laminar to a turbulent regime, when heat transfer
on the wall becomes increasingly unsteady.

Differences in the Rayleigh—Nusselt number relation
also exist for the two different Prandtl numbers used in
our calculations. The diagram in Fig. 5 reveals that the
threshold Rayleigh number where the transition from
laminar to turbulent flow occurs is not significantly in-
fluenced by the fluid Prandtl number. Yet, the transition
and the turbulent fluid motion exhibit higher-amplitude
velocity and temperature fluctuations at a higher Prandtl
number.

5. Conclusions

Two-dimensional numerical simulations of a fluid flow
with internal heat generation in a square cavity at Ray-
leigh numbers from 10° to 10!' and at Prandtl numbers
0.25 and 0.6 were performed to investigate the Nusselt
number behavior on the boundaries of the simulation
domain. The dynamics of the Nusselt number was also
analyzed to identify the influence of different flow regimes
on boundary heat transfer. To capture the fluid subgrid
motion in the turbulent regime, the LES Smagorinsky
model was implemented. Although the simulation results
prove that the Smagorinsky model is a robust and reliable
numerical tool for solving turbulent natural convection
cases in a fluid with an internal heat generation, we were
not successful in finding any previous implementation of
the Smagorinsky model for the presented problem.

Our simulations disclose that steady-state heat trans-
fer can be achieved up to a Rayleigh number of 107. At the
Rayleigh number 10%, instabilities are observed, which
result in an oscillating behavior of the system. When the
Rayleigh number is further increased, the fluid flow be-
comes unsteady with no permanent fluid structures.
Moreover, Nusselt number calculations reveal large in-
tervals between the lowest and the highest time-averaged
Nusselt numbers. It was also observed that a higher
Prandtl number enhances heat transfer through the side
and upper boundaries, whereas at a lower Prandtl number
heat transfer is enhanced through the bottom boundary.

The calculated time distributions of boundary-aver-
aged Nusselt numbers disclose the time of the first bi-
furcation point crossing. It was also observed that
turbulence first appears locally, at the side and the upper
boundaries, whereas the fluid flow in the lower region of
the simulation domain stays laminar. Global turbulence
does not appear up to a Rayleigh number 10''. It was
also found that the Prandtl number does not signifi-
cantly influence the time of the laminar-to-turbulent
flow transition. However, it has an important impact on
the location and the intensity of turbulence.

A comparison of the time-boundary-averaged Nus-
selt number reveal that the present results in general
agree well with those already published. Nevertheless,
the simulations reveal that the Rayleigh—Nusselt number
relation is not uniformly linear in the log,,—log,
diagram, as has been widely accepted. The Rayleigh—
Nusselt number relation reveals the regime changes.
Furthermore, it was also observed that this process is
distinctive at different boundaries of the simulation
domain.
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